标准差计算公式:标准差σ=方差开平方。标准差,又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根,能反映一个数据集的离散程度。
平均数相同的两组数据,标准差未必相同。原因是它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。因而对于具有不同水平的数列或总体,就不宜直接用标准差来比较其标志变动度的大小,而需要将标准差与其相应的平均数对比,计算标准差系数,即采用相对数才能进行比较。
标准差和方差的关系
标准差和方差的关系为,标准差是方差的算术平方根,标准差用s表示;方差是标准差的平方,方差用s^2表示。方差和标准差是测度数据变异程度的最重要、最常用的指标。
方差是各个数据与其算术平均数的离差平方和的平均数。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。标准差又称均方差,是离均差平方的算术平均数(即:方差)的算术平方根。
标准差大小说明什么?
标准差越小,表明数据越聚集;标准差越大,表明数据越离散。标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平。
如果一个测验测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好。
会计网所有内容信息未经授权禁止转载、摘编、复制及建立镜像,违者将依法追究法律责任。不良信息举报电话:15820538167。
沪公网安备 31010902002985号,沪ICP备19018407号-2, CopyRight © 1996-2024 kuaiji.com 会计网, All Rights Reserved. 上海市互联网举报中心 中央网信办举报中心